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Abstract 

This document establishes the mathematical definition and 
interpretation of the objects of the sheaf data model. 

1 Introduction 

This document describes the mathematical definition and interpretation of the objects of 
the sheaf data model, emphasizing the definition and interpretation of schema. A 
primarily non-mathematical discussion of the context and motivation for the model are 
given in (1). 

The document is organized as follows. In sections 2 through 6 we develop the notion of 
lattice-ordered schema for relational tables. In sections 7 and 8 we introduce restriction 
and the notion of a sheaf of lattice ordered relations, which we use in section 9 to define 
the sheaf data model. The remaining sections discuss further features of schema, in 
particular the schema of map types. 

We assume the reader is familiar with the basic ideas of partially ordered sets and lattices, 
see for instance (2). 

2 Object-relational mapping 

We begin by establishing a relational (table) interpretation for the notion of type as 
present in typical object-oriented languages. For concrete examples, we will use the C++ 
programming language. This language is of major practical importance and, for our 
purposes at least, its notion of type is close enough to many other languages that our 
results should apply generally. 

In C++, the types we are interested in are primitive types and class types. There is a given 
set of primitive types (int, float, etc). Each primitive type implies a finite set of values, 
the implementation of which is not specified. 

Class types are programmer-defined types. Each class specifies a collection of data 
members and a collection of function members. Since we are focusing on a data model, 
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we will be mostly concerned with the data members. In C++, an object can contain other 
objects, which are referred to as subobjects (3 pp. 7-8). A subobject can be a data 
member subobject or a base class subobject. We'll refer to the set of immediate 
subobjects associated with a class as the subobject schema, with each subobject specified 
by a name and a type. 

We would like to associate a relational table with each class. The obvious approach is for 
each row in the table to represent an object of the class and each column of the table to 
represent a subobject. That is, we'd like the relation schema to be the same as the 
subobject schema. The difficulty in this approach is that a subobject can be of any type, 
another class type in particular, but an attribute of a relation must be a primitive type. 

3 Some notation 

Before we resolve this object-relational schema mismatch, there's an important notational 
issue to deal with. Associated with a type T are two important sets: the set of instances of 
the type and the set of subobjects of the type, that is, the subobject schema of the type. 
Informally, these two sets correspond, respectively, to the set of rows and the set of 
columns in the table representing the type. 

We need a notation that clearly distinguishes these two sets while at the same time 
maintaining the close connection between them. We will denote a type with an upper 
case Roman letter or a name with an initial upper case letter, for instance "T" or 
"A_type_name". We will refer to the set of instances of the type (the rows in the table) by 
underlining: T is the row set of T. We will refer to the set of subobjects (the columns of 
the table) with a vertical bar: T| is the column set of T. 

4 From subobject schema to lattice schema 

We can resolve the object-relational schema mismatch issue by generalizing the 
subobject schema from a set of subobjects to a lattice of subobjects. We start with a 
simple example, then describe the general procedure. 

4.1 An example 

We have two types: R2, a two dimensional vector, and Phase_space, the combination of a 
vector r and a vector p, both of type R2. 

class R2 
{ 
 public: 
  double x; 
  double y; 
  R2(double tuple[2]); 
  R2& operator=(double tuple[2]); 
} 
 
class Phase_space 
{ 
 public: 
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  R2 r; 
  R2 p; 
  Phase_space(double tuple[4]); 
  Phase_space& operator=(double tuple[4]); 
}  

The subobject schema for these two are: 

schema(R2) = R2| = {(x: double|), (y: double|)} 

schema(Phase_space) = Phase_space| = {(r: R2|), (p: R2|)} 

It's useful to cast these schema in the form of a relation "has_subobject". The schema for 
R2| becomes: 

R2| has_subobject (x: double|) 

R2| has_subobject (y: double|) 

and the schema for Phase_space becomes: 

Phase_space| has_subobject (r: R2|) 

Phase_space| has_subobject (p: R2|) 

Now form the sum (disjoint union) of the Phase_space schema with the schema for each 
of its subobjects. Although r and p are both of type R2| and hence have the same schema, 
the sum treats these identical copies as distinct, so we get: 

Phase_space| has_subobject (r: R2|) 

Phase_space| has_subobject (p: R2|) 

r: R2| has_subobject (r.x: double|) 

r: R2| has_subobject (r.y: double|) 

p: R2| has_subobject (p.x: double|) 

p: R2| has_subobject (p.y: double|) 

We now interpret the has_subobject relation as the cover relation for a partially ordered 
set, the schema poset. We can visualize the schema poset using a Hasse diagram, which is 
a directed acyclic graph in which the nodes represent the poset members and the links 
represent the cover relation. The graph is drawn so that if member a ≤ b, then a is below b 
on the page. The Hasse diagrams for the schema posets of R2 and Phase_space are shown 
in Figure 1(a) and Figure 2(a), respectively. 

Associated with every finite poset P is a finite distributive lattice L = O(P), the set of 
down sets of P ordered by inclusion. Conversely, P = J(L), the set of join irreducible 
members of L. We define the schema of Phase_space to be the lattice associated with the 
schema poset. The Hasse diagrams for the schema lattices for R2 and Phase_space are 
shown in Figure 1(b) and Figure 2(b), respectively. In Appendix A we explicitly 
construct the schema lattice for Phase_space from the schema poset. 
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4.2 General procedure 

The procedure we used in the example above is general. Given the subobject schema for 
a type and the subobject schema for the types of its subobjects, form the sum of the 
has_subobject relations of the class and its subobjects. Do this recursively for subobjects 
of subobjects; the recursion terminates on subobjects of primitive type. Interpret the 
resulting relation as the cover relation of the schema poset and define the schema lattice 
to be the finite distributive lattice generated by the schema poset. So in general we have 
schema lattice = O(schema poset) and schema poset = J(schema lattice). 

4.3 Some more notation 

We need some more notation to denote the ordered structures introduced in the preceding 
sections. We will denote a cover relation by :< and an order relation by ≤. A partially 
ordered set will be denoted using the same symbol as its unordered base set and an italic 
font: T = (T, ≤). The lattice associated with a poset will be denoted with the same symbol 
as the poset and a script font: T = O(T) . 

So for instance, the column set of a type T is T|, the schema poset is T|, and the schema 
lattice is T|. 

4.4 Interpretation of the lattice schema 

The lattice schema has the following features: 

1. The lattice schema represents a collection of types related by subobject inclusion. 

2. Each join-irreducible member ("jim") of the lattice corresponds to a type 
explicitly specified in the has_subobject relation. This captures the notion that an 
explicitly specified type is not just the collection of subobjects specified by the 
schema, it may have additional features, such as member functions, that are 
outside the scope of the schema. 

3. Each join reducible member ("jrm") of the lattice corresponds to a type implicitly 
generated by the lattice construction. An implicit type is precisely the collection 
of subobjects represented by the schema, a struct in C++. 

4. Each atom corresponds to a primitive type. This captures the notion that 
representation of a primitive type is outside the scope of the schema. 

5. The subobject schema for a given member is specified by the set of maximal jims 
in its strict down set. Equivalently, we can define the subobject schema of a given 
member to be the join of the maximal jims, which is a unique member of the 
lattice. So we can think of the subobject schema as either a set of subobjects or as 
a member of the lattice. If the given member is a jim, the subobject schema is the 
only member in its lower cover. If the given member is a jrm, the subobject 
schema member is the same as the given member. 
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6. The relation schema for a given member is specified by the set of minimal jims 
(that is, atoms) in its down set. Equivalently, the relation schema is the join of the 
minimal jims. So we can think of the relation schema as either a set of primitive 
subobjects (attributes) or a member of the lattice. 

7. The relation schema for a member t| specifies a Cartesian product space which we 
refer to as the attribute space for t| and denote by At|. Each instance t of the type 
specified by t| has a corresponding tuple in At|. We assume that every non-
primitive type has both a constructor and an assignment operator that take as input 
a tuple of the type specified by the associated relation schema. We also assume 
that each type has a conversion operator that produces as output the relation tuple 
associated with an instance. We can thus convert back and forth between objects 
and tuples. 

5 The table metaphor for lattice schema 

The table metaphor for the relational data model visualizes a relation as a table with 
column headings describing the schema. We can extend this metaphor to lattice schema. 
We have already visualized a schema poset or lattice using a Hasse diagram. The table 
metaphor for lattice schema replaces the column headings with the Hasse diagram for the 
schema poset or lattice. A simple example is shown in Figure 1(c). 

6 From lattice schema to subobject schema 

In the previous section, we showed how we can generate a lattice schema given a 
collection of subobject schemas. We also showed how class types are associated with the 
members of the lattice and how primitive types are associated with the atoms of the 
lattice. We can reverse the procedure: given any lattice and an assignment of a primitive 
type to each atom of the lattice, we can interpret the lattice as a schema. We can interpret 
each member of the lattice as a type with a subobject schema specified by the maximal 
jims in its down set and a relation schema specified by the minimal jims in its down set. 

7 Restriction and sheaves of relations 

If t| and t|' are schema members with t|' ≤ t| we say that t|' is a subtype of t|. If o is an 
object of type t|, the subobject of o specified by t|' is defined as the object o' of type t|' 
with tuple equal to the projection of the o tuple onto the relation schema of t|'. We also 
refer to object o' as the restriction of o to t|'. 

Let ⊤| denote the top member of the schema lattice T| for a type T. ⊤| defines a Cartesian 
product space A⊤|, as described in section 4.4 item 7. Let R⊤| denote a subset of A⊤|, that 
is, a relation. Given any member t| of the schema with t| ≤ ⊤|, we can restrict each tuple in 
R⊤| to t|. This process creates another relation Rt| and a restriction map: 

 ρt|,⊤|: R⊤| → Rt| (note the order of the subscripts) 
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that associates each tuple in R⊤| with a tuple in Rt|. For any t|'' ≤ t|' ≤ t|, we can create Rt|'', 
Rt|', and Rt| and the restriction process also defines restriction maps between them, 
satisfying the conditions 

ρt|,t| = identity map 

ρt|'',t| = ρt|'',t|'∘ ρt|',t| 

If we create the restricted relation Rt| for every member t| of the schema lattice, we get a 
family of relations: 

R = {Rt| : t| ∈ T|} 

We define the restriction relation ≼ on R with Rt| ≼ Rt|' if and only if there exists a 
restriction map ρt|',t|. Given the conditions satisfied by the restriction map, ≼ is reflexive 
and transitive, so it is a preordering and R = (R, ≼) is a preorder. 

The above construction associates with each t| ∈ T| a relation Rt| ∈ R with Rt| ≼ Rt|' 
precisely when t|' ≤ t| (note the order reversal). Such an order reversing map from a finite 
distributive lattice to a preorder of relations is called a sheaf of relations. The schema 
lattice is referred to as the source of the sheaf and the preorder of relations is referred to 
as the target of the sheaf. We will call the largest member of the target, the table which is 
restricted to produce all the other members of the target, the top table. The sheaf of 
relations associated with the table of Figure 1(c) is shown in Figure 3(a). 

We can take the sheaf construction one step further. Noting that the construction so far 
specifies a lattice order only for the columns of a relational table and that the row order is 
entirely independent of the column order, we can impose an order on the rows as well. 
We assume that the top table has an externally specified ordering relation, so the rows 
form a partially ordered set, which defines an associated finite distributive lattice. The 
notation introduced in section 4.3 for columns can be applied to the rows as well. With 
this extension, a sheaf of relations thus becomes a sheaf of lattice-ordered relations. 

8 The table metaphor for lattice ordered relations. 

We can extend the table metaphor to lattice ordered relations by providing a row graph as 
well as a column graph. An example is shown in Figure 4. Using this metaphor, we can 
refer to a sheaf of lattice ordered relations as a "sheaf table". 

9 The sheaf data model 

The objects of the sheaf data model are sheaves of lattice-ordered relations.  A data base 
is a collection of sheaf tables. Each table has an associated schema lattice and the schema 
for the table is specified as a member of the schema lattice. The conventional relation 
schema for the table, the columns of the table, are defined by the minimal jims in the 
down set of the schema member, as described in section 4.4. 
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The schema lattice of a given table is given by the row lattice of some other table. Every 
table thus has another table as its schema. This recursion is terminated in a special table 
called the primitives schema table. The primitives schema table is its own schema; its 
rows specify its columns. Figure 5 shows a simple example. The primitives_schema is 
the schema for all schema tables. The tuple associated with any schema member thus 
provides the type in the host language (e.g. C++) and the memory allocation requirements 
of an object described by the schema member. 

Schema in the sheaf data model are first class objects and the collection of types in a 
database forms a dependent type system. As shown below, this is an essential feature for 
representing map types. 

10 Subtypes and inheritance 

The remainder of this document discusses additional features of schema in the sheaf data 
model. We begin by clarifying the relationship between the notion of subtype in the sheaf 
model and the usual notion of inheritance. The lattice definition of subobject given in 
section 7 is semantically similar to the corresponding definition in C++, although the 
syntax is different. Consider the following modification of the Phase_space class defined 
above: 
 
class Phase_space2 : public R2 
{ 
 public: 
  R2 p; 
  Phase_space(double tuple[4]); 
  Phase_space& operator=(double tuple[4]); 
}  
 
Phase_space2 ps, *psp = &ps; 

The schema poset for Phase_space2 is shown in Figure 6.  

Phase_space2 inherits R2, so object ps has an R2 subobject.  The Phase_space2 object ps 
can be restricted to its R2 subobject by an up-cast: 
 
R2 &r2 = ps 

The members of the inherited subobject can be also referenced directly as members of ps, 
ps.x and ps.y, or more explicitly using the scope operator, psp->R2::x and psp->R2::y. 

Since member p is declared by value (as opposed to pointer or reference), ps has a second 
R2 subobject named p. The member access operator ps.p restricts the ps object to its R2 
subobject p. 

Thus, there are two main differences in C++ between an inherited subobject and a data 
member subobject: 

1. an inherited subobject doesn't have an explicit name and is referred to by type, 
while a data member subobject is referred to by name, and 
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2. an inherited subobject can be accessed via up-casting, as long as the inherited type 
is unique (no repeated inheritance), while a data member subobject is accessed via 
the member access operator. 

The lattice schema notion of subtype, as described so far, does not distinguish between 
inheritance and aggregation (data membership), both mechanisms are represented by 
subtype inclusion. The lattice schema notion of subobject is the same as the C++ notion 
of subobject, but the syntax for referencing a subobject is different. Every subobject can 
be accessed via restriction to a named subtype. 

We can however distinguish between inheritance and aggregation with a simple naming 
convention, not formally part of the model. Namely, a subtype is directly inherited if its 
local name (the part of the name after the last dot) is the same as its type. A subtype is 
indirectly inherited (or just inherited for short) by a type if there is a chain of direct 
inheritance between the type and the subtype. This convention is adequate for many 
practical cases. 

11 Schema of map types 

So far we've dealt with explicit class schema and the lattice of subtypes generated from 
them. Now we turn our attention to the schema for maps between types. We want to 
specify a type S (for "section") such that an instance s of S represents a map from a 
domain type B (for "base") to a range type F (for "fiber"). In other words, the row set of S 
is a set of maps between the row set of B and the row set of F: 

S  = {s: B →  F} 

Note that we are concerned here with ordinary maps on the row set B, not with order-
preserving maps on the row poset B; we are ignoring the row order for now.  

What is S|, the schema lattice for S? We'll approach this question in two steps. First we'll 
develop the schema poset, then derive the schema lattice. 

11.1 Schema poset 

The notion of a map or function is usually introduced in elementary mathematics as a 
procedure or rule that assigns a member of the range to each member of the domain. In 
more advanced treatments, a map is defined as a special kind of relation, as a set of pairs 

{(b ∈ B, f ∈ F)}  

containing exactly one such pair for each member of B. We'll start with the map as 
procedure approach and return to the map as relation later. 

11.1.1 Local map objects and schema 

Recall that, as described in section 4, a general object has a schema poset, data members, 
a constructor and an assignment operator that take a relational tuple as input, a 
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conversion operator that produces a tuple as output. A local map object is a general object 
with an additional member function, the evaluation method, which provides the 
procedure for the map. The evaluation method takes as input a member b of the domain 
and, using the data members of the object, it produces as output the member f of the 
range that is the value of the map at b. The schema for a local map implicitly specifies the 
existence of the evaluation method, but is otherwise just a general object schema. 

The class specified by such a local map schema can be viewed as a parameterized family 
of procedures. The associated relation schema specifies a Cartesian product space, A, the 
attribute space of the local map. The evaluation method is then formally a map: 

evaluation: B × A → F  

We can view this map on B × A as a family of maps on B, with one member of the family 
for each tuple in A. Since the data members of a specific instance of the class correspond 
to a tuple from A, there is a one to one correspondence between members of the family of 
maps and instances of the class. That is, each local map object s can indeed be viewed as 
a map 

s.evaluation: B → F 

with the values of the attributes relegated to the background. 

It will be convenient in the following to cast the evaluation method into a slightly 
different form. Since we assume every type F has a constructor that takes a relational 
tuple as input, we can define the evaluation method by 

evaluation: B × A → AF 

where AF is the attribute space for the type F. The previous definition is then equivalent 
to composition of the revised redefinition with the constructor of F. We will use this 
revised definition in the remainder of the document. 

11.1.2 Global map objects and schema 

We refer to the map objects above as local because for a given map s, there may not be a 
single procedure that is valid for the entire domain. In general, the domain may be 
decomposed into multiple, possibly overlapping subsets, with a different procedure 
defined for each subset. A given procedure applies only to the members of B contained in 
the subset the procedure is associated with. 

More formally, let P(B) denote the power set of B, that is, the set of all subsets of B. P(B) 
is a poset and a lattice under the inclusion ordering. We assume that we have specified an 
evaluation subset, E ⊆ P(B), that contains precisely the subsets of B on which the 
procedures are defined. Since P(B) is a poset, so is E. 

If the map is to be defined everywhere on B, then E must cover B, that is: 
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E = {e0, e1, e2 ...} ⊆ P(B) and ⋃i ei = B 

where the union is computed in B. 

If the members of E considered as subsets of B overlap, multiple procedures may apply to 
a given member of B. An evaluation member for b ∈ B is any member of E that contains 
b. The evaluation subset for b, Eb, is set of all evaluation members for b and is given by: 

Eb = {b}↑ ∩ E 

where {b} ∈ P(B) is the singleton subset containing b and both the up-set and the 
intersection are computed in P(B). 

A global map schema s| is a schema that contains a local map schema s|e as subtype for 
each member e of E. We assume there is a map, the evaluation-schema map: 

ε: E →  S| : e ↦ s|e 

that defines the association between evaluation members and local schema members. 

A global map object is an object instantiated on a global map schema. The attributes of 
the global map object are a tuple in the attribute space defined by the relation schema 
associated with the global map schema. 

The restriction se of a global map object s to an evaluation member e is the subobject 
defined by restricting s to the subtype s|e = ε(e). The attribute tuple of the restriction is the 
projection of the global attribute tuple onto the relation schema associated with the 
subtype.  

The evaluation method of a global map object is defined by restriction to an evaluation 
member: 

s.evaluation(b) = se.evaluation(b) with e ∈ Eb 

11.1.3 Compatibility 

If the evaluation subset Eb for a given domain member b contains more than one member, 
say Eb = {e, e'}, then we can evaluate the map s in each member: se.evaluation(b) and 
se'.evaluation(b). If s is to define a map from B to AF, then it must be single-valued at 
each point of B. This defines a compatibility condition: 

se.evaluation(b) = se'.evaluation(b)  for all e, e' ∈ Eb 

This compatibility condition is a constraint on both the global map schema and the map 
attribute tuple. The evaluation methods for the local map subtypes must be chosen so that 
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compatibility can be satisfied for some subset of the global attribute space and then the 
attribute tuple for the given map must lie in the compatible subspace. 

11.1.4 Constructing global map schema posets 

A global schema poset and the associated evaluation schema map can be constructed in 
many different ways. Any poset and map combination that satisfies the compatibility 
condition is a valid schema. While there is no exhaustive enumeration or taxonomy for 
global schema, it is useful to describe a few constructions. We will construct our 
examples using class R2, which we introduced previously, as the range type and the very 
simple domain shown in Figure 7. This combination of domain and range is complex 
enough to exhibit the constructions we want to discuss, but simple enough we can still 
conveniently draw diagrams of the constructions. 

11.1.4.1 Coarsest schema 

The simplest schema is constructed by choosing the coarsest evaluation subset, a single 
member, as shown in Figure 8(a). This corresponds to a single evaluation method that 
covers the entire domain and the schema has a single member, as shown in Figure 8(b). 
The schema as shown assumes four attributes, r0, θ0, r1, θ1, which are the polar 
components for the result at v0 and v1. The evaluation method is: 

void evaluation(B& b, AR2& result) 
{ 
  if(b == v0) 
  { 
    result.x = r0*cos(θ0); 
    result.y = r0*sin(θ0); 
  } 
  else if(b == v1) 
  { 
    result.x = r1*cos(θ1); 
    result.y = r1*sin(θ1); 
  } 
  else  // b == seg 
  { 
    result.x = 0.5*(r0*cos(θ0) + r1*cos(θ1)); 
    result.y = 0.5*(r0*sin(θ0) + r1*sin(θ1)); 
  } 
} 

Of course, this particular schema and evaluation method are just for illustration. Any 
evaluation method and corresponding set of attributes is possible. 

11.1.4.2 Finest schema 

The opposite extreme is to choose the finest evaluation subset, as shown in Figure 9(a). 
Every member of the domain gets its own evaluation method, as shown Figure 9(b). This 
example assumes the local map type for each evaluation member is the same, each has 
attributes which are polar components and each uses the same evaluation method: 
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void evaluation(B& b, AR2& result) 
{ 
  result.x = r*cos(θ); 
  result.y = r*sin(θ); 
} 

As with the previous example, this particular choice of evaluation method and attributes 
is just for illustration. 

11.1.4.3 Intermediate schema 

An intermediate construction is shown in Figure 10. The evaluation subset contains two 
members, Figure 10(a), and the corresponding schema contains two local members, 
Figure 10(b). Once again, the attributes are polar components and the evaluation methods 
are the obvious variations on the previous examples. 

11.1.4.4 Domain order embedding 

A particularly useful construction is to require the evaluation subset to be a down-set in 
P(B) and require the evaluation-schema map ε to be an order embedding. In Figure 11, 
we show the example of Figure 10 with E extended to a down-set and embedded in the 
schema. As before, the attributes are polar components and the evaluation methods are 
the obvious variations on the previous examples 

This construction has the desirable property that since E is a down-set, the schema 
explicitly supports all meaningful restrictions. For instance, the schema in Figure 10(b) 
specifies an evaluation method on the subset {v0, v1}, which means restriction to the 
subset {v0} is meaningful, but the schema does not have sufficient resolution to specify 
the restriction.  The schema in Figure 11 does. 

The schema in Figure 11 also exhibits another desirable property: the attribute set of the 
restriction to {v0} or {v1} is a a strict subset of the attribute set of {v0, v1}. This is 
typical of order embedding schema, although not strictly necessary, as the next example 
will show. 

11.1.4.5 Product order embedding 

An even more useful construction is to require the evaluation subset to be a down-set in 
P(B) and require the evaluation-schema map ε to be an order embedding of E × F|, where 
F| is the schema poset for the range type. In Figure 12, we show a product order 
embedding for the example of Figure 10. 

A schema of this form provides explicit support for restriction to any combination of 
domain subset and range component.  

This schema serves as a further  example of the interaction between restriction and 
attribute sets mentioned in the previous example. For instance, the restriction from ({v0, 



The Sheaf Data Model  David M. Butler 

Release 1.0 13 of 33 10/1/2012 
© 2012 Limit Point Systems, Inc. 

v1}, R2|) to ({v0}, R2|), reduces the attribute set, but the restriction from ({v0}, R2|) to 
(v0, x) does not. 

11.1.4.6 Product order isomorphism. 

We can make the even more stringent requirement that ε be an order isomorphism, that 
is, an onto order embedding, as shown in Figure 13. 

11.1.4.7 Map as relation 

As promised, we return to the map as relation approach we mentioned at the beginning of 
section 12. If we adopt the product order isomorphism schema and choose E to be the set 
of atoms of P(B), that is: 

E = { {b}, for all b ∈ B } 

we get a schema with a copy of the range schema for each member of the domain, as 
shown in Figure 14. A map instantiated on this schema contains an instance of the range 
type for each member of the domain and hence is equivalent to the map as relation 
approach.  

11.1.4.8 Piece-wise order embedding procedure 

The product order embedding property is an extremely useful property and hence it is 
interesting to ask: given a schema which is not a product order embedding, we can 
always construct an equivalent schema which is an embedding? The answer is yes, 
almost. Since any map is determined by just the schema of the maximal members of the 
evaluation subset, we can always construct a schema that is a piecewise embedding of the 
down-set of each maximal member. We demonstrate the construction in Figure 15 using 
the schema from Figure 10. 

Let E, ε, and S| denote the input evaluation subset, evaluation-schema map, and map 
schema, respectively. Let E+, ε+, and S|+ denote the output evaluation subset, evaluation-
schema map and schema, respectively.  Let F|  and f|t denote the range schema poset and 
its top member, respectively, which are the same for both input and output. 

We start by defining the output evaluation subset. Let max(E) denote the set of maximal 
members of E. We define E+ to be the sum of the down-sets of the maximal members of 
the input: 

E+ = Σe in max(E)  e↓ 

Note that max(E+) = max(E) and for each e ∈ E+ there is a unique member 
max(e) ∈ max(E+) such that e ≤ max(e). 

The second step is to create a piecewise embedding ε+: 
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ε+: E+ × F| →  S|+ 

with 

ε+(e, f|) ≤ ε+(e', f|') if and only if e ≤ e' and f| ≤ f|'  

and with  

ε+(e, f|).evaluation = πf| ∘ ε(max(e)) for all e ∈ E+ and f| ∈ F| 

In words, the evaluation method for ε+(e, f) is the composition of the input evaluation 
method for max(e) with projection onto f|. The embedding creates a disjoint piece S|+e of 
schema for each e ∈ max(E+), specifically: 

S|+e = ε+(e, f|t)↓ 

Figure 15(a) and Figure 15(b) show S|+{seg} and S|+{v0, v1}, respectively. 

The third step is to extract the attribute subsets from the input schema. Define the total 
attribute subset A 

A = S| - ε(E) 

The total attribute set for the schema of Figure 10 is shown in Figure 15(c). 

For each e in max(E), define the member attribute subset Ae: 

Ae = ε(e)↓ ∩ A 

The member attribute subsets for the schema of Figure 10 are shown in Figure 15(d) and 
(e). 

Finally, we can define the output schema. We define the base set for S|+ to be the sum of 
the total attribute set A and the piecewise embeddings S|+e: 

S|+ = A + Σe in max(E) S|+e 

We define the order relation to be: s ≤ s' if s ≤  s' in S|+e or A or s in Ae and s' in S|+e. The 
output schema is shown in Figure 15(f). 

The piecewise embedding construction does not in general produce a global embedding 
of the input E × F| , nor does it necessarily produce a schema that it optimal is some 
sense. For instance, the schema in Figure 12 specifies that the restriction to {v0} requires 
only a subset of the attributes of {v0, v1}, while in the schema in Figure 15 the restriction 
to {v0} requires the full set of attributes of {v0, v1}. Nevertheless, the existence of the 
procedure means we can require schema to be in at least piece-wise embedded form 
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without limiting the types of maps we can support. This in turn means we need to support 
only a single form of ε+, as opposed to introducing some data-driven mechanism for 
representing a wider class of evaluation-schema maps. 

11.2 Global section schema lattice 

However the global section schema poset is constructed, the schema lattice is defined as 
the finite distributive lattice generated by the schema poset: 

S| = O(S|) 

If S| is a product order isomorphism, S| ∼ E × F|, then S| ∼  O(E × F|).  

The tensor product X ⊗ Y of finite distributive lattices X and Y (4), is defined by 

X ⊗ Y = O(J(X) × J(Y)). 

If F| = O(F|) is the range schema lattice and we define E = O(E), then the schema lattice 
for a product schema poset is the tensor product: 

S| ∼  O(E × F|) = E ⊗ F| 

In particular, the schema lattice for the map as relation schema is a tensor product: 

S| ∼ P(B) ⊗ F| 

The above definition of tensor product states the product is a down set lattice with the 
jims being pairs of jims of the factors. The join operation in a down set lattice is given by 
union of down sets. Since the down sets are sets of pairs, it can be shown the join satisfies 
the conditions: 

(x1, y1) ~ (x1, y2) = (x1, y1 ~ y2) 

(x1, y1) ~ (x2, y1) = (x1 ~ x2, y1) 

The members of the tensor product lattice are thus either pairs (x ∈ X, y ∈ Y) or are joins 
of pairs with no components in common, that is, they have the form: 

(x1, y1) ~ (x2, y2)  ~ ... ~  (xn, yn) with xi ≠ xj and yi ≠ yj for i ≠ j. 

This means the schema can describe a piecewise map consisting of any combination of 
pairs (evaluation part, range schema part). This supports the specification of piecewise 
heterogeneous map representations, where the evaluation varies with position. It also 
supports restriction to any combination of domain and range parts. 
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11.3 Internal and external domains 

We've shown above that to represent a map with a domain B requires an evaluation poset 
E ⊆ P(B). We can think E of as the row poset of a type E, so every map type requires an 
auxiliary type as its evaluation poset. But notice that the map schema refers to the 
original domain type B only in the signature of the evaluation methods of the local map 
objects. In other words, there is no need for the domain itself to be represented as a type 
(i.e. a table) within the system. We will refer to a domain that is represented in the system 
as an internal domain, otherwise we will refer to it as an external domain. If a domain B 
is external, then so is the representation of P(B) and the evaluation subsets, Eb. A map 
type is internal or external if its domain is internal or external, respectively. 

Note that an external domain need not be finite. The only requirement is that there be 
some way of uniquely identifying each member. 

Turning this argument around, given a type B, we can either consider it the domain for an 
internal map type or the evaluation poset for an external map type.  

The most important application for external domains is the representation of spatial 
objects, where the external domain is the (infinite) set of points in the object and the 
evaluation poset is the set of cells in a spatial decomposition (a mesh), ordered by point 
set inclusion. The points within each cell are referred to by local coordinates. Maps 
defined on such a domain associate an instance of the range type with each point in each 
cell of the domain. 

Figure 16 shows an example based on the domain and range of Figure 7, but the domain 
is now considered external. The segment and vertex objects, which were members of the 
domain in the previous examples are now interpreted as cells and members of the 
evaluation poset E, shown in Figure 16(a). Figure 16(b) shows the range schema F|, 
which is the same as previous examples. Figure 16(c) shows E × F| and Figure 16(d) 
shows an order embedding schema. These diagrams all look similar to the previous 
examples with internal domains.  

What is different are the evaluation methods. The domain is the infinite point set of the 
segment and the map can be evaluated at any point along the segment. Since the domain 
is one-dimensional, we can refer to any point using a real-valued coordinate. For 
example, a suitable evaluation method for the segment is: 

void evaluation(double& b, AR2& result) 
{ 
  result.x = (1-b)*r0*cos(θ0) + b*r1*cos(θ1)); 
  result.y = (1-b)*r0*sin(θ0) + b*r1*sin(θ1)); 
} 
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12 Conclusion 

The sheaf data model provides a unified framework for describing traditional tabular 
(relational) data, object-oriented types with inheritance, and maps on both finite and 
infinite domains. 
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14 Appendices 

14.1 Construction of Phase_space schema lattice 

The finite distributive lattice generated from a poset P is isomorphic to the set O(P) of all 
down sets of P ordered by inclusion. As shown in (2 pp. 20-21), every member of O(P) is 
a union of the down sets of antichains of members of P. We can exhaustively enumerate 
O(P) as long as P is small enough. 

rx↓ = {rx} (A.1) 
ry↓ = {ry} (A.2) 
vx↓ = {vx} (A.3) 
vy↓ = {vy} (A.4) 
rx↓ ∪ ry↓ = {rx, ry} (A.5) 
rx↓ ∪ vx↓ = {rx, vx} (A.6) 
rx↓ ∪ vy↓ = {rx, vy} (A.7) 
ry↓ ∪ vx↓ = {ry, vx} (A.8) 
ry↓ ∪ vy↓ = {ry, vy} (A.9) 
vx↓ ∪ vy↓ = {vx, vy} (A.10) 
rx↓ ∪ ry↓ ∪ vx↓ = {rx, ry, vx} (A.11) 
rx↓ ∪ ry↓ ∪ vy↓ = {rx, ry, vy} (A.12) 
rx↓ ∪ vx↓ ∪ vy↓ = {rx, vx, vy} (A.13) 
ry↓ ∪ vx↓ ∪ vy↓ = {ry, vx, vy} (A.14) 
rx↓ ∪ ry↓ ∪ vx↓ ∪ vy↓ = {rx, ry, vx, vy} (A.15) 
r↓ = {r, rx, ry} (A.16) 
r↓ ∪ vx↓ = {r, rx, ry, vx} (A.17) 
r↓ ∪ vy↓ = {r, rx, ry, vy} (A.18) 
r↓ ∪ vx↓ ∪ vy↓ = {r, rx, ry, vx, vy} (A.19) 
v↓ = {v, vx, vy} (A.20) 
v↓ ∪ rx↓ = {v, vx, vy, rx} (A.21) 
v↓ ∪ ry↓ = {v, vx, vy, ry}  (A.22) 
v↓ ∪ rx↓ ∪ ry↓ = {v, vx, vy, rx, ry} (A.23) 
r↓ ∪ v↓ = {r, rx, ry, v, vx, vy} (A.24) 

Phase_space↓ = {Phase_space, r, rx, ry, v, vx, vy} (A.25) 

The Hasse diagram for the above lattice is shown in Figure 2(b). 
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15 Figures 

 
Figure 1: Class R2 (a) schema poset , (b) schema lattice, with join-irreducible 

members shaded, and (c) table metaphor for lattice schema. 
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Figure 2: Class Phase_space (a) schema poset and (b) schema lattice, with join-

irreducible members shaded. 
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Figure 3: Sheaf of relations for the table of Figure 1(c). 

 

Figure 4: Table metaphor for lattice ordered relation. 
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Figure 5: A simple primitives schema table. 

type size align

primitives_schema

type

size
align

primitives_schema
string 8 8

int 8 8
int 8 8

primitives_schema 48 8
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Figure 6: Phase_space schema poset with inheritance 

 

 
Figure 7: Domain and range for map schema examples: (a) domain geometry, (b) 

domain poset, (c) domain powerset,  (d) range schema poset. 
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Figure 8: Coarsest schema: (a) evaluation subset, (b) a global map schema 

{seg}{v0} {v1}

{}

{seg, v0} {v0, v1} {seg, v1}

{seg, v0, v1} E

(a)

E member of evaluation subset

ε({seg, v0, v1})

(b)

r0: double| θ0: double| r1: double| θ1: double|
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Figure 9: Finest schema: (a) evaluation subset, (b) a global map schema. 

(b)

ε(seg) ε(v0) ε(v1)

rs: double| θs: double| r0: double| θ0: double| r1: double| θ1: double|

(a)
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Figure 10: Intermediate schema: (a) evaluation subset, (b) a global map schema. 

(a)

{seg}{v0} {v1}

{}

{seg, v0} {v0, v1} {seg, v1}

{seg, v0, v1}

E

E

E member of evaluation subset

(b)

ε({seg}) ε({v0, v1})

rs: double| θs: double| r0: double| θ0: double| r1: double| θ1: double|
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Figure 11: Domain order embedding for example of Figure 10: (a) E extended to a 

down-set in P(B), (b) E as a poset, (c) a global map schema. 
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EE E

E member of evaluation subset

(c)
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ε({v0}) ε({v1})

rs: double| θs: double| r0: double| θ0: double| r1: double| θ1: double|
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Figure 12: Product order embedding for example of Figure 10: (a) evaluation subset 
E, (b) range schema F|, (c) Cartesian product poset E × F|, (d) global map schema. 
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{seg}
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(d)
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ε({v1}, y|):
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Figure 13: Product order isomorphism for example of Figure 10: (a) evaluation 
subset E, (b) range schema F|, (c) Cartesian product poset E × F|, (d) global map 

schema 
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Figure 14: Map as relation: (a) evaluation subset, (b) Cartesian product poset 

E × F|, (c) global map schema 
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Figure 15: Piecewise embedding procedure for example in Figure 10: (a) S|+{seg}, 

(b) S|+{v0, v1}, (c) total attribute subset, (d) attribute subset for ε({seg}), (e) attribute 
subset for ε({v0, v1}), (f) global map schema. 
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Figure 16: External domain product embedding: (a) evaluation poset E, (b) range 

schema F|, (c) E × F|, (d) global map schema 
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